Recovery of tail-elicited siphon-withdrawal reflex following unilateral axonal injury is associated with ipsi- and contralateral changes in gene expression in Aplysia californica.
نویسندگان
چکیده
Behavioral, cellular and molecular changes were examined following axonal injury in the marine mollusc Aplysia californica. Unilateral nerve injury was performed by crushing the pleural-pedal connective and the peripheral pedal nerves innervating one side of the posterior body wall and the tail. The injury procedure severs the axons of the pleural sensory neurons resulting in the blockade of the tail-elicited siphon-withdrawal reflex. Partial reflex recovery is observed within 3 d and reaches 50% of the pretest value by six weeks postinjury. Retrograde staining of injured nerves combined with electrophysiological recordings from siphon motor neurons show that axons can regenerate through the crushed site and reconnect with the tail by three weeks postinjury. Moreover, the behavioral and electrophysiological measurements suggest that the contralateral sensory neurons may contribute to the early recovery of the siphon-withdrawal reflex. The levels of mRNAs coding for actin and calreticulin are elevated while the mRNAs coding for intermediate filament protein, sensorin A, FMRFamide are reduced in the ipsilateral pleural ganglia as detected by Northern blots. In the contralateral pleural ganglia, the levels of mRNAs coding for actin, sensorin A and FMRFamide are elevated. These molecular changes in both the ipsi- and contralateral sides are consistent with the hypothesis that both sides are participating in the behavioral recovery following unilateral axonal injury.
منابع مشابه
Recovery of function, peripheral sensitization and sensory neurone activation by novel pathways following axonal injury in Aplysia californica.
Recovery of behavioural and sensory function was examined following unilateral pedal nerve crush in Aplysia californica. Nerve crush that transected all axons connecting the tail to the central nervous system (CNS) eliminated the ipsilateral tail-evoked siphon reflex, whose sensory input travels in the crushed tail nerve (p9). The first reliable signs of recovery of this reflex were observed wi...
متن کاملNeural circuit of tail-elicited siphon withdrawal in Aplysia. II. Role of gated inhibition in differential lateralization of sensitization and dishabituation.
In the preceding report, we observed that tail-shock-induced sensitization of tail-elicited siphon withdrawal reflex (TSW) of Aplysia was expressed ipsilaterally but that dishabituation induced by an identical tail shock was expressed bilaterally. Here we examined the mechanisms of this differential lateralization. We first isolated the modulatory pathway responsible for the induction of contra...
متن کاملNeural circuit of tail-elicited siphon withdrawal in Aplysia. I. Differential lateralization of sensitization and dishabituation.
The tail-elicited siphon withdrawal reflex (TSW) has been a useful preparation in which to study learning and memory in Aplysia. However, comparatively little is known about the neural circuitry that translates tail sensory input (via the P9 nerves to the pleural ganglion) to final reflex output by siphon motor neurons (MNs) in the abdominal ganglion. To address this question, we examined the f...
متن کاملDifferential classical conditioning of a defensive withdrawal reflex in Aplysia californica.
The defensive siphon and gill withdrawal reflex of Aplysia is a simple reflex mediated by a well-defined neural circuit. This reflex exhibits classical conditioning when a weak tactile stimulus to the siphon is used as a conditioned stimulus and a strong shock to the tail is used as an unconditioned stimulus. The siphon withdrawal component of this reflex can be differentially conditioned when ...
متن کاملRunning Head: MECHANISMS OF REFLEX PLASTICITY IN APLYSIA Neural circuit of tail-elicited siphon withdrawal in Aplysia: II. Role of gated inhibition in differential lateralization of sensitization and dishabituation
In the previous report (Bristol et al. 2003), we observed that tail shock-induced sensitization of tail-elicited siphon withdrawal reflex (TSW) of Aplysia was expressed ipsilaterally, but that dishabituation induced by an identical tail shock was expressed bilaterally. Here we examined the mechanisms of this differential lateralization. We first isolated the modulatory pathway responsible for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 15 10 شماره
صفحات -
تاریخ انتشار 1995